Let

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
4 & 10 \\
-1 & \pi
\end{array}\right], \mathbf{B}=\left[\begin{array}{cc}
2 & 8 \\
\sqrt{2} & \sin 1
\end{array}\right], \mathbf{C}=\left[\begin{array}{ll}
2 & 0 \\
1 & 6
\end{array}\right], \mathbf{D}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-5 & -9 & 0
\end{array}\right], \mathbf{E}=\left[\begin{array}{cc}
-3 & -4 \\
-9 & 16 \\
2 \pi & 3
\end{array}\right] \\
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
100 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1016 \\
-4
\end{array}\right]
\end{gathered}
$$

1. Write down row-echelon forms and reduced row-echelon forms of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$, respectively.

Solve the following linear system of equations, using inverse matrix method.
2.
$4 x+10 y=1$
$-x+\pi y=-1$
3.

$$
2 x+8 y=100
$$

$\sqrt{2} x+(\sin 1) y=-1$
4.
$2 x=1016$
$x+6 y=-4$

